Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(13): 131101, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034506

RESUMO

The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise.

2.
Phys Rev Lett ; 123(23): 231108, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868444

RESUMO

Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded.

3.
Rev Sci Instrum ; 82(9): 094502, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974605

RESUMO

We report an application of Kalman filtering to the inverted pendulum (IP) of the Virgo gravitational wave interferometer. Using subspace method system identification techniques, we calculated a linear mechanical model of Virgo IP from experimental transfer functions. We then developed a Kalman filter, based on the obtained state space representation, that estimates from open loop time domain data, the state variables of the system. This allows the observation (and eventually control) of every resonance mode of the IP mechanical structure independently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...